Supplemental Figure 1. Npas4-RNAi has no adverse effect on the overall health of neurons. (a) Npas4-RNAi does not induce apoptosis. Cultured cerebellum granule neurons were co-transfected with GFP and Npas4-RNAi or control-RNAi at 5 DIV. Apoptosis was induced at 6 DIV by replacing serum-containing media with serum-free media containing 5 mM KCl (low KCl) or 60 mM KCl (high KCl) for 24 hours. Cells were fixed and stained with Hoechst to visualize cell nuclei. Apoptotic cells were identified based on their fragmented or condensed nuclei and the percentage of transfected cells undergoing apoptosis was determined. Data are displayed as mean ± SEM from 3 independent experiments. (b) Npas4-RNAi does not inhibit dendritic growth by Sholl analysis. Hippocampal neurons were co-transfected with GFP and vector control, Npas4-RNAi or control-RNAi constructs at 6 DIV, fixed at 25–26 DIV, and confocal z-stacks acquired. The number of dendrites crossing concentric circles of increasing radii centered on the cell body was counted. Two independent experiments are shown. n = 20, 21, and 21 for vector control, Npas4-RNAi and control-RNAi, respectively, in the left panel. n = 49, 39, and 51 for vector control, Npas4-RNAi and control-RNAi, respectively, in the right panel. Data are displayed as mean ± SEM. * p < 0.05 by t-test.
Supplemental Figure 2. Construction and validation of the Npas4^{−/−} mouse. (a) Schemes used to generate the Npas4^{−/−} mouse. (b) Southern blot showing the successful removal of the Npas4 allele in mouse ES cells. Genomic DNA was digested with AluI and hybridized with the 5′ probe shown in (a). (c) Semi-quantitative PCR shows that Npas4 mRNA is absent in Npas4^{−/−} mice. Dissociated cortical neurons from Npas4^{+/+} and Npas4^{−/−} littermates were cultured and stimulated with KCl (50 mM, 7 DIV). RNA samples were collected at the indicated times. (d) Western blots showing that Npas4 protein is absent in Npas4^{−/−} mice. Experiments were conducted as described in (c) except that samples were collected 2 hours after stimulation.
Supplemental Figure 3. Npas4 knockout mice have similar mIPSCs to wildtype littermates. (a) Cumulative distributions of mIPSC interevent intervals (left) and amplitudes (right) recorded from acute hippocampal slices prepared from wildtype (thick line) and Npas4^{-/-} (thin line) mice (P15-18). (b) mean ± SEM from (a). mIPSC interevent intervals are 339.5 ±16.0 and 311.6 ± 11.0 ms and amplitudes are 29.2 ± 0.7 and 30.6 ± 0.7 pA for wildtype and Npas4^{-/-} mice, respectively.
Supplemental Figure 4. Construction and validation of the Npas4^flx/flx mouse. (a) Schemes used to generate the Npas4^flx/flx mouse. (b) Representative images showing that Npas4 expression is abolished in neurons transfected with a Cre recombinase construct (bottom) in organotypic hippocampal slices prepared from Npas4^flx/flx mice.
Supplemental Figure 5. Expression of Cre recombinase has no effect on GABAergic synapses in wildtype hippocampal slices. (a) Cumulative distributions of mIPSC interevent intervals (left) and amplitudes (right) recorded from wildtype mouse neurons transfected with control construct (thin line) or Cre recombinase (thick line). (b) Summary data from (a) are shown as mean ± SEM. mIPSC interevent intervals are 750.1 ± 35.5 and 732.9 ± 29.1 ms and amplitudes are 26.6 ± 0.6 and 25.0 ± 0.6 pA for control and Cre, respectively.
Supplemental Figure 6. Validation of the Npas-minigene construct. (a) Npas4-minigene is induced by neuronal activity. Npas4−/− mouse neurons were transfected with Npas4-minigene (6 DIV) and stimulated with NMDA (20 mM, 14 DIV) for 2 hours. (b) Npas4-minigene drives expression of an Npas4-responsive luciferase reporter. Rat hippocampal neurons were transfected (5 DIV) with the control plasmid, Npas4-RNAi, or Npas4-RNAi and an RNAi-resistant Npas4-minigene together with either Npas4-Luc (left) or MEF2-Luc (right). Cultures were subsequently stimulated with KCl (55 mM, 7 DIV) for 7 hours and luciferase activity measured. Data were compiled from 3 independent experiments, each conducted in triplicate.
Supplemental Figure 7. Lentivirus expressing Npas4-RNAi knocks down the expression of Npas4. Mouse hippocampal neurons were infected with lentivirus (3 DIV) and stimulated with KCl (8 DIV) for 2 hours. GFP is used to demonstrate comparable levels of infection between neurons infected with Npas4-RNAi and control virus.
Supplemental List

List of candidate genes whose expression levels are affected by Npas4-RNAi (U = Up-regulated; D = Down-regulated; N = No change)

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Title</th>
<th>Activity-regulated</th>
<th>Npas4-RNAi-regulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rmi3</td>
<td>vesicle-associated membrane protein 7</td>
<td>N</td>
<td>U</td>
</tr>
<tr>
<td>1410424</td>
<td>erk2</td>
<td>immediate early response 2</td>
<td>U</td>
</tr>
<tr>
<td>1411765</td>
<td>Egfr1</td>
<td>early growth response 1</td>
<td>U</td>
</tr>
<tr>
<td>1411132</td>
<td>dhh1</td>
<td>germ cell-less homolog 1 (Drosophila)</td>
<td>D</td>
</tr>
<tr>
<td>1417406</td>
<td>Serata1</td>
<td>SERTA domain containing 1</td>
<td>U</td>
</tr>
<tr>
<td>1418897</td>
<td>zfhx7</td>
<td>zinc finger protein Zfhx7</td>
<td>B</td>
</tr>
<tr>
<td>1418375</td>
<td>eif4a3</td>
<td>eif4a3 variant gene 3</td>
<td>U</td>
</tr>
<tr>
<td>1419184</td>
<td>nfr2</td>
<td>four and a half LIM domains 2</td>
<td>D</td>
</tr>
<tr>
<td>1422904</td>
<td>arl0</td>
<td>Kruppel-like factor 9</td>
<td>U</td>
</tr>
<tr>
<td>1426295</td>
<td>fh1</td>
<td>trefoil homolog 1 (Drosophila)</td>
<td>N</td>
</tr>
<tr>
<td>1423777</td>
<td>arl10d32</td>
<td>ataxin repeat domain 32</td>
<td>U</td>
</tr>
<tr>
<td>1426124</td>
<td>hsa16_at</td>
<td>upstream transcription factor 1</td>
<td>D</td>
</tr>
<tr>
<td>1426266</td>
<td>ehtr2</td>
<td>early growth response 2</td>
<td>U</td>
</tr>
<tr>
<td>1426815</td>
<td>rabi2b</td>
<td>RAB28, member RAS oncogene family</td>
<td>N</td>
</tr>
<tr>
<td>1426826</td>
<td>chmp2b</td>
<td>chromatin modifying protein 28</td>
<td>U</td>
</tr>
<tr>
<td>1429205</td>
<td>mff</td>
<td>myosin family heavy polypeptide 5 (Drosophila)</td>
<td>D</td>
</tr>
<tr>
<td>1428708</td>
<td>mdp1</td>
<td>scrollo copypaste mammary gland progenitor cell marker</td>
<td>B</td>
</tr>
<tr>
<td>1432454</td>
<td>mbd1</td>
<td>miR-182 target site and miR-183 target site (Drosophila)</td>
<td>D</td>
</tr>
<tr>
<td>1436329</td>
<td>egfr3</td>
<td>early growth response 3</td>
<td>U</td>
</tr>
<tr>
<td>1439007</td>
<td>egfr4</td>
<td>early growth response 4</td>
<td>U</td>
</tr>
<tr>
<td>145102</td>
<td>cksa</td>
<td>cold shock domain protein A</td>
<td>N</td>
</tr>
<tr>
<td>1418389</td>
<td>alm4</td>
<td>cdc42, beta isoform like 1</td>
<td>N</td>
</tr>
<tr>
<td>1419905</td>
<td>mitf</td>
<td>MITF, microphthalmia-associated transcription factor</td>
<td>N</td>
</tr>
<tr>
<td>1426298</td>
<td>zta</td>
<td>zinc finger and BTB domain containing 16</td>
<td>D</td>
</tr>
<tr>
<td>1426269</td>
<td>stxbp5</td>
<td>SERTA domain containing 1</td>
<td>U</td>
</tr>
<tr>
<td>1431039</td>
<td>gyr2</td>
<td>early growth response 2</td>
<td>U</td>
</tr>
<tr>
<td>1426815</td>
<td>rabi2b</td>
<td>RAB28, member RAS oncogene family</td>
<td>N</td>
</tr>
<tr>
<td>1426826</td>
<td>chmp2b</td>
<td>chromatin modifying protein 28</td>
<td>U</td>
</tr>
<tr>
<td>1429205</td>
<td>mff</td>
<td>myosin family heavy polypeptide 5 (Drosophila)</td>
<td>D</td>
</tr>
<tr>
<td>1428708</td>
<td>mdp1</td>
<td>scrollo copypaste mammary gland progenitor cell marker</td>
<td>B</td>
</tr>
<tr>
<td>1432454</td>
<td>mbd1</td>
<td>miR-182 target site and miR-183 target site (Drosophila)</td>
<td>D</td>
</tr>
<tr>
<td>1436329</td>
<td>egfr3</td>
<td>early growth response 3</td>
<td>U</td>
</tr>
<tr>
<td>1439007</td>
<td>egfr4</td>
<td>early growth response 4</td>
<td>U</td>
</tr>
<tr>
<td>145102</td>
<td>cksa</td>
<td>cold shock domain protein A</td>
<td>N</td>
</tr>
<tr>
<td>1418389</td>
<td>alm4</td>
<td>cdc42, beta isoform like 1</td>
<td>N</td>
</tr>
<tr>
<td>1419905</td>
<td>mitf</td>
<td>MITF, microphthalmia-associated transcription factor</td>
<td>N</td>
</tr>
<tr>
<td>1426298</td>
<td>zta</td>
<td>zinc finger and BTB domain containing 16</td>
<td>D</td>
</tr>
</tbody>
</table>

Category 2: Nucleotide Binding

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Title</th>
<th>Activity-regulated</th>
<th>Npas4-RNAi-regulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1418325</td>
<td>apolh2</td>
<td>apolipoprotein H-like 2</td>
<td>D</td>
</tr>
<tr>
<td>1418563</td>
<td>serpinb1</td>
<td>serpinb1 RNA-binding protein 1</td>
<td>D</td>
</tr>
<tr>
<td>1420157</td>
<td>rpl29a</td>
<td>ribosomal protein L29a</td>
<td>D</td>
</tr>
<tr>
<td>1426251</td>
<td>rpl29b</td>
<td>ribosomal protein L29b</td>
<td>D</td>
</tr>
<tr>
<td>1432649</td>
<td>hpgd</td>
<td>heme oxygenase 1</td>
<td>D</td>
</tr>
<tr>
<td>1428207</td>
<td>sdb</td>
<td>selenophosphate synthetase 2</td>
<td>D</td>
</tr>
<tr>
<td>1429090</td>
<td>srdcl1</td>
<td>selenophosphate synthetase 2</td>
<td>D</td>
</tr>
<tr>
<td>1430539</td>
<td>cct2</td>
<td>cct2, chaperonin containing tetramer 2</td>
<td>D</td>
</tr>
<tr>
<td>1436896</td>
<td>prks3</td>
<td>prks3, protein kinase C, delta isoform</td>
<td>D</td>
</tr>
<tr>
<td>1454880</td>
<td>rpm2</td>
<td>rpm2, ribosomal protein L38-like</td>
<td>D</td>
</tr>
<tr>
<td>1455284</td>
<td>skil</td>
<td>skil, rho-dependent guanine nucleotide exchange factor</td>
<td>D</td>
</tr>
<tr>
<td>145971</td>
<td>skb1</td>
<td>skb1, RNA-binding motif protein 4</td>
<td>D</td>
</tr>
<tr>
<td>1440071</td>
<td>dicer1</td>
<td>dicer1, Dcr-1 homolog (Drosophila)</td>
<td>D</td>
</tr>
</tbody>
</table>

Category 3: Ion Channels

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Title</th>
<th>Activity-regulated</th>
<th>Npas4-RNAi-regulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1437230</td>
<td>kcnv1</td>
<td>potassium voltage-gated channel, shaker-related subfamily, member 1</td>
<td>D</td>
</tr>
<tr>
<td>1456785</td>
<td>kcnv2</td>
<td>potassium voltage-gated channel, shaker-related subfamily, member 2</td>
<td>D</td>
</tr>
<tr>
<td>1417538</td>
<td>slc3a1</td>
<td>solute carrier family 3, member A1</td>
<td>D</td>
</tr>
<tr>
<td>1428215</td>
<td>slc3a2</td>
<td>solute carrier family 3, member B2</td>
<td>D</td>
</tr>
<tr>
<td>142408</td>
<td>slc3a3</td>
<td>solute carrier family 3, member C3</td>
<td>D</td>
</tr>
<tr>
<td>142234</td>
<td>slc3a4</td>
<td>solute carrier family 3, member D4</td>
<td>D</td>
</tr>
<tr>
<td>142444</td>
<td>slc3a5</td>
<td>solute carrier family 3, member E5</td>
<td>D</td>
</tr>
<tr>
<td>1425910</td>
<td>slc3a6</td>
<td>solute carrier family 3, member F6</td>
<td>D</td>
</tr>
<tr>
<td>1436725</td>
<td>kcnq2</td>
<td>potassium voltage-gated channel, human clone, member Q2</td>
<td>D</td>
</tr>
<tr>
<td>1437119</td>
<td>slc6a9</td>
<td>solute carrier family 6, member A9</td>
<td>D</td>
</tr>
<tr>
<td>145865</td>
<td>slc9a3</td>
<td>solute carrier family 9, member A3</td>
<td>D</td>
</tr>
<tr>
<td>145847</td>
<td>slc9a4</td>
<td>solute carrier family 9, member A4</td>
<td>D</td>
</tr>
<tr>
<td>1459204</td>
<td>slc3a5</td>
<td>solute carrier family 3, member A5</td>
<td>D</td>
</tr>
</tbody>
</table>

Category 4: Membrane Proteins/Synaptic Proteins

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Title</th>
<th>Activity-regulated</th>
<th>Npas4-RNAi-regulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1418588</td>
<td>nrs1</td>
<td>neurexin 1</td>
<td>D</td>
</tr>
<tr>
<td>1419077</td>
<td>mmp3</td>
<td>membrane protein, polymyosin 3 (MADOK, polsubfamily member 3)</td>
<td>D</td>
</tr>
<tr>
<td>1419296</td>
<td>ephb5</td>
<td>epidermal growth factor receptor family, subunit b5</td>
<td>D</td>
</tr>
<tr>
<td>1419119</td>
<td>gap42</td>
<td>gap42, gap junction protein 42</td>
<td>D</td>
</tr>
<tr>
<td>1420170</td>
<td>npp2</td>
<td>neprilysin, neutral peptidase 2</td>
<td>D</td>
</tr>
<tr>
<td>1428351</td>
<td>atm</td>
<td>ataxia-telangiectasia mutated</td>
<td>D</td>
</tr>
<tr>
<td>1423852</td>
<td>tmem46</td>
<td>tmem46</td>
<td>D</td>
</tr>
<tr>
<td>1424415</td>
<td>cgrp1</td>
<td>calcitonin gene-related peptide 1</td>
<td>D</td>
</tr>
<tr>
<td>1432110</td>
<td>soc2</td>
<td>soc2, sorcin-like 1, synaptic protein 2</td>
<td>D</td>
</tr>
<tr>
<td>1426293</td>
<td>tmem91</td>
<td>tmem91</td>
<td>D</td>
</tr>
<tr>
<td>1438207</td>
<td>atp1b1</td>
<td>atp1b1, ATP synthase subunit B1</td>
<td>D</td>
</tr>
<tr>
<td>1428203</td>
<td>atp2a2</td>
<td>atp2a2, ATP synthase subunit a2</td>
<td>D</td>
</tr>
<tr>
<td>1428204</td>
<td>atp2c5</td>
<td>atp2c5, ATP synthase subunit c5</td>
<td>D</td>
</tr>
<tr>
<td>1429085</td>
<td>gabbr2</td>
<td>gabbr2, gamma-aminobutyric acid A (GABA-A) receptor, subunit beta 2</td>
<td>D</td>
</tr>
<tr>
<td>1428196</td>
<td>tmem86a</td>
<td>tmem86a, transmembrane protein 86a</td>
<td>D</td>
</tr>
<tr>
<td>1428854</td>
<td>tmem84</td>
<td>tmem84, transmembrane protein 84</td>
<td>D</td>
</tr>
<tr>
<td>1434553</td>
<td>atg5</td>
<td>atg5, autophagy-related 5</td>
<td>D</td>
</tr>
<tr>
<td>1435053</td>
<td>tmem65</td>
<td>tmem65, transmembrane protein 65</td>
<td>D</td>
</tr>
<tr>
<td>1434728</td>
<td>sdlg</td>
<td>sdlg, glutamate receptor, ionotrophic, AMPA2, alpha 3</td>
<td>D</td>
</tr>
<tr>
<td>1434600</td>
<td>sdc3</td>
<td>sdc3, syndecan-3</td>
<td>D</td>
</tr>
<tr>
<td>1435667</td>
<td>sv2b</td>
<td>sv2b, synaptic vesicle glycoprotein 2 b</td>
<td>D</td>
</tr>
<tr>
<td>1434377</td>
<td>nptx1</td>
<td>neurexin, neuronal pentraxin 1</td>
<td>D</td>
</tr>
<tr>
<td>143309</td>
<td>stxbp5</td>
<td>stxbp5, syntaxin binding protein 5 (tomsyn)</td>
<td>D</td>
</tr>
</tbody>
</table>
Category 5: Kinases/Phosphatases

- Pkp1
- Paraneoplastic antigen MA2
- Cathepsin D

Category 6: Protein Signaling

- Pp1
- Pp2

Category 7: Calcium Signaling

- Ppp1
- Ppp2

Category 8: Ubiquitination

- Ppi1
- Ppi2

Category 9: Cytoskeleton Trafficking/Intracellular Signaling

- Pkm2
- Pki

Category 10: Catalytic Activity/Metabolic

- Pnp1
- Pnp2

Category 11: Other

- Pk
- Ppi
Uncharacterized

Nanog
N-acetylneuraminic acid synthase (sialic acid synthase)
Aryl hydrocarbon receptor
Aryl hydrocarbon receptor interacting protein
Arsenyi RNA synthase
Ulk1
Ulk1
Ulk1
Ulk1
Ulk1
Ulk1
Ulk1
Ulk1
Ulk1
Down syndrome critical region gene 3
U
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1435636</td>
<td>2310051F07Rik RIKEN cDNA 2310051F07 gene</td>
</tr>
<tr>
<td>1435637</td>
<td>2310058G13Rik RIKEN cDNA 2310058G13 gene</td>
</tr>
<tr>
<td>1435827</td>
<td>2310056P03Rik RIKEN cDNA 2310056P03 gene</td>
</tr>
<tr>
<td>1436386</td>
<td>220287E11Rik RIKEN cDNA 220287E11 gene</td>
</tr>
<tr>
<td>1437771</td>
<td>2202906J10Rik RIKEN cDNA 2202906J10 gene</td>
</tr>
<tr>
<td>1438221</td>
<td>2203007K02Rik RIKEN cDNA 2203007K02 gene</td>
</tr>
<tr>
<td>1438531</td>
<td>2203009A14Rik RIKEN cDNA 2203009A14 gene</td>
</tr>
<tr>
<td>1438859</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1439108</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1439265</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1439732</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1439859</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1440363</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1440589</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1441491</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1444522</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1447723</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1448251</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1452151</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1452287</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1453059</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1453324</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1454349</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1454989</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1457843</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1455177</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1455324</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1455632</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
<tr>
<td>1456885</td>
<td>2203012A08Rik RIKEN cDNA 2203012A08 gene</td>
</tr>
</tbody>
</table>

SUPPLEMENTARY INFORMATION

doi: 10.1038/nature07319